首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment
  • 本地全文:下载
  • 作者:Thi Diem Nguyen ; Timothy R. Cavagnaro ; Stephanie J. Watts-Williams
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-019-51369-5
  • 出版社:Springer Nature
  • 摘要:The positive effects of arbuscular mycorrhizal fungi (AMF) have been demonstrated for plant biomass, and zinc (Zn) and phosphorus (P) uptake, under soil nutrient deficiency. Additionally, a number of Zn and P transporter genes are affected by mycorrhizal colonisation or implicated in the mycorrhizal pathway of uptake. However, a comprehensive study of plant physiology and gene expression simultaneously, remains to be undertaken. Medicago truncatula was grown at different soil P and Zn availabilities, with or without inoculation of Rhizophagus irregularis. Measures of biomass, shoot elemental concentrations, mycorrhizal colonisation, and expression of Zn transporter (ZIP) and phosphate transporter (PT) genes in the roots, were taken. Mycorrhizal plants had a greater tolerance of both P and Zn soil deficiency; there was also evidence of AMF protecting plants against excessive Zn accumulation at high soil Zn. The expression of all PT genes was interactive with both P availability and mycorrhizal colonisation. MtZIP5 expression was induced both by AMF and soil Zn deficiency, while MtZIP2 was down-regulated in mycorrhizal plants, and up-regulated with increasing soil Zn concentration. These findings provide the first comprehensive physiological and molecular picture of plant-mycorrhizal fungal symbiosis with regard to soil P and Zn availability. Mycorrhizal fungi conferred tolerance to soil Zn and P deficiency and this could be linked to the induction of the ZIP transporter gene MtZIP5, and the PT gene MtPT4.
国家哲学社会科学文献中心版权所有