首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Modelling bacterial twitching in fluid flows: a CFD-DEM approach
  • 本地全文:下载
  • 作者:Pahala Gedara Jayathilake ; Bowen Li ; Paolo Zuliani
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-019-51101-3
  • 出版社:Springer Nature
  • 摘要:Bacterial habitats are often associated with fluid flow environments. Bacterial twitching is important for initial bacterial colonization and biofilm formation. The existing research about bacteria twitching is largely experimental orientated. There is a lack of models of twitching motility of bacteria in shear flows, which could provide fundamental understanding about how bacterial twitching would be affected by bacteria associated properties such as number of pili and their distribution on the cell body and environmental factors such as flow and surface patterns. In this work, a three-dimensional modelling approach of Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM) proposed to study bacterial twitching on flat and groove surfaces under shear flow conditions. Rod-shaped bacteria are modelled as groups of spherical particles and Type IV pili attached to bacteria are modelled as dynamic springs which can elongate, retract, attach and detach. The CFD-DEM model of rod-shape bacteria is validated against orbiting of immotile bacteria in shear flows. The effects of fluid flow rate and surface topography on twitching motility are studied. The model can successfully predict upstream twitching motility of rod-shaped bacteria in shear flows. Our model can predict that there would be an optimal range of wall shear stress in which bacterial upstream twitching is most efficient. The results also indicate that when bacteria twitch on groove surfaces, they are likely to accumulate around the downstream side of the groove walls.
国家哲学社会科学文献中心版权所有