首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:High-resolution seismic tomography of Long Beach, CA using machine learning
  • 本地全文:下载
  • 作者:Michael J. Bianco ; Peter Gerstoft ; Kim B. Olsen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-019-50381-z
  • 出版社:Springer Nature
  • 摘要:We use a machine learning-based tomography method to obtain high-resolution subsurface geophysical structure in Long Beach, CA, from seismic noise recorded on a "large-N" array with 5204 geophones (~13.5 million travel times). This method, called locally sparse travel time tomography (LST) uses unsupervised machine learning to exploit the dense sampling obtained by ambient noise processing on large arrays. Dense sampling permits the LST method to learn directly from the data a dictionary of local, or small-scale, geophysical features. The features are the small scale patterns of Earth structure most relevant to the given tomographic imaging scenario. Using LST, we obtain a high-resolution 1 Hz Rayleigh wave phase speed map of Long Beach. Among the geophysical features shown in the map, the important Silverado aquifer is well isolated relative to previous surface wave tomography studies. Our results show promise for LST in obtaining detailed geophysical structure in travel time tomography studies.
国家哲学社会科学文献中心版权所有