首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Photopharmacologic Vision Restoration Reduces Pathological Rhythmic Field Potentials in Blind Mouse Retina
  • 本地全文:下载
  • 作者:Katharina Hüll ; Tyler Benster ; Michael B. Manookin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-49999-w
  • 出版社:Springer Nature
  • 摘要:Photopharmacology has yielded compounds that have potential to restore impaired visual responses resulting from outer retinal degeneration diseases such as retinitis pigmentosa. Here we evaluate two photoswitchable azobenzene ion channel blockers, DAQ and DAA for vision restoration. DAQ exerts its effect primarily on RGCs, whereas DAA induces light-dependent spiking primarily through amacrine cell activation. Degeneration-induced local field potentials remain a major challenge common to all vision restoration approaches. These 5-10 Hz rhythmic potentials increase the background firing rate of retinal ganglion cells (RGCs) and overlay the stimulated response, thereby reducing signal-to-noise ratio. Along with the bipolar cell-selective photoswitch DAD and second-generation RGC-targeting photoswitch PhENAQ, we investigated the effects of DAA and DAQ on rhythmic local field potentials (LFPs) occurring in the degenerating retina. We found that photoswitches targeting neurons upstream of RGCs, DAA (amacrine cells) and DAD (bipolar cells) suppress the frequency of LFPs, while DAQ and PhENAQ (RGCs) had negligible effects on frequency or spectral power of LFPs. Taken together, these results demonstrate remarkable diversity of cell-type specificity of photoswitchable channel blockers in the retina and suggest that specific compounds may counter rhythmic LFPs to produce superior signal-to-noise characteristics in vision restoration.
国家哲学社会科学文献中心版权所有