摘要:Chase and escape behaviors are important skills in many sports. Previous studies have described the behaviors of the attacker (escaper) and defender (chaser) by focusing on their positional relationship and have presented several key parameters that affect the outcome (successful attack or defense). However, it remains unclear how each individual agent moves, and how the outcome is determined in this type of interaction. To address these questions, we constructed a chase and escape task in a virtual space that allowed us to manipulate agents' kinematic parameters. We identified the basic strategies of each agent and their robustness to changes in their parameters. Moreover, we identified the determinants of the outcome and a geometrical explanation of their importance. Our results revealed the underlying structure of a simplified human chase and escape interaction and provided the insight that, although each agent apparently moves freely, their strategies in two-agent interactions are in fact rather constrained.