首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Multi-tissue network analysis for drug prioritization in knee osteoarthritis
  • 本地全文:下载
  • 作者:Michael Neidlin ; Smaragda Dimitrakopoulou ; Leonidas G. Alexopoulos
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-51627-6
  • 出版社:Springer Nature
  • 摘要:Knee osteoarthritis (OA) is a joint disease that affects several tissues: cartilage, synovium, meniscus and subchondral bone. The pathophysiology of this complex disease is still not completely understood and existing pharmaceutical strategies are limited to pain relief treatments. Therefore, a computational method was developed considering the diverse mechanisms and the multi-tissue nature of OA in order to suggest pharmaceutical compounds. Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to identify gene modules that were preserved across four joint tissues. The driver genes of these modules were selected as an input for a network-based drug discovery approach. WGCNA identified two preserved modules that described functions related to extracellular matrix physiology and immune system responses. Compounds that affected various anti-inflammatory pathways and drugs targeted at coagulation pathways were suggested. 9 out of the top 10 compounds had a proven association with OA and significantly outperformed randomized approaches not including WGCNA. The method presented herein is a viable strategy to identify overlapping molecular mechanisms in multi-tissue diseases such as OA and employ this information for drug discovery and compound prioritization.
国家哲学社会科学文献中心版权所有