首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Lipopolysaccharide-induced expansion of histidine decarboxylase-expressing Ly6G+ myeloid cells identified by exploiting histidine decarboxylase BAC-GFP transgenic mice
  • 本地全文:下载
  • 作者:Jun Takai ; Hiroshi Ohtsu ; Atsushi Sato
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-51716-6
  • 出版社:Springer Nature
  • 摘要:Histamine is a biogenic amine that is chiefly produced in mast cells and basophils and elicits an allergic response upon stimulation. Histidine decarboxylase (HDC) is a unique enzyme that catalyzes the synthesis of histamine. Therefore, the spatiotemporally specific Hdc gene expression profile could represent the localization of histamine-producing cells under various pathophysiological conditions. Although the bioactivity of histamine is well defined, the regulatory mechanism of Hdc gene expression and the distribution of histamine-producing cell populations in various disease contexts remains unexplored. To address these issues, we generated a histidine decarboxylase BAC (bacterial artificial chromosome) DNA-directed GFP reporter transgenic mouse employing a 293-kb BAC clone containing the entire Hdc gene locus and extended flanking sequences (Hdc-GFP). We found that the GFP expression pattern in the Hdc-GFP mice faithfully recapitulated that of conventional histamine-producing cells and that the GFP expression level mirrored the increased Hdc expression in lipopolysaccharide (LPS)-induced septic lungs. Notably, a CD11b + Ly6G + Ly6C low myeloid cell population accumulated in the lung during sepsis, and most of these cells expressed high levels of GFP and indeed contain histamine. This study reveals the accumulation of a histamine-producing myeloid cell population during sepsis, which likely participates in the immune process of sepsis.
国家哲学社会科学文献中心版权所有