首页    期刊浏览 2025年05月02日 星期五
登录注册

文章基本信息

  • 标题:Unravelling the links between seismo-acoustic signals and eruptive parameters: Etna lava fountain case study
  • 本地全文:下载
  • 作者:Mariangela Sciotto ; Andrea Cannata ; Michele Prestifilippo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-52576-w
  • 出版社:Springer Nature
  • 摘要:Deriving eruption source parameters from geophysical data is critical for volcano hazard mitigation, yet remains a challenging task in most volcanoes worldwide. In this work, we explored the temporal relationship between geophysical signals and eruptive parameters measured during six explosive episodes from the New South-East Crater of Mt. Etna (Italy). The quadratic reduced seismic velocity and pressure were calculated to track the temporal variation of volcanic elastic radiation, and the lava fountain height was estimated by thermal camera image processing. The temporal relationships between these geophysical and eruptive time series were studied. In particular, the first considered lava fountain exhibited a "clockwise hysteresis" pattern: higher seismic amplitude with respect to the fountain height during the waxing phase as compared to the waning phase. We also calculated the regression parameters for both linear and power laws, linking seismo-acoustic and eruptive time series. For the linear regressions, we found fairly constant values of the scaling factors in five out of six eruptive episodes, which can be considered as a promising step to derive eruption source parameters from geophysical data in real-time. Regarding power law regressions, a clear relationship was observed between the exponents determined for the power law linking quadratic reduced velocity and lava fountain height, and the time interval duration from the previous eruption. These results suggest that the condition of the uppermost part of the plumbing system (e.g. viscosity of residing magma and conduit conditions) play a key role in the seismic energy generation during the eruptions.
国家哲学社会科学文献中心版权所有