摘要:When you suddenly understand how to solve a problem through an original and efficient strategy, you experience the so-called "Eureka" effect. The appearance of insight usually occurs after setting the problem aside for a brief period of time (i.e. incubation), thereby promoting unconscious and novel associations on problem-related representations leading to a new and efficient solving strategy. The left posterior parietal cortex (lPPC) has been showed to support insight in problem solving, when this region is activated during the initial representations of the task. The PPC is further activated during the next incubation period when the mind starts to wander. The aim of this study was to investigate whether stimulating the lPPC, either during the initial training on the problem or the incubation period, might enhance representation change in problem solving. To address this question, participants performed the Number Reduction Task (NRT, convergent problem-solving), while excitatory or sham (placebo) transcranial direct current stimulation (tDCS) was applied over the lPPC. The stimulation was delivered either during the initial problem representation or during the subsequent incubation period. Impressively, almost all participants (94%) with excitatory tDCS during the initial training gained representational change in problem solving, compared to only 39% in the incubation period and 33% in the sham groups. We conclude that the lPPC plays a role during the initial problem representation, which may be considerably strengthened by means of short brain stimulation.