首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana
  • 本地全文:下载
  • 作者:Prashanti Patel ; Karuna Yadav ; Ashish Kumar Srivastava
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-019-52858-3
  • 出版社:Springer Nature
  • 摘要:Plant micro RNAs (miRNAs) control growth, development and stress tolerance but are comparatively unexplored in banana, whose cultivation is threatened by abiotic stress and nutrient deficiencies. In this study, a native Musa-miR397 precursor harboring 11 copper-responsive GTAC motifs in its promoter element was identified from banana genome. Musa-miR397 was significantly upregulated (8-10) fold in banana roots and leaves under copper deficiency, correlating with expression of root copper deficiency marker genes such as Musa-COPT and Musa-FRO2. Correspondingly, target laccases were significantly downregulated (>-2 fold), indicating miRNA-mediated silencing for Cu salvaging. No significant expression changes in the miR397-laccase module were observed under iron stress. Musa-miR397 was also significantly upregulated (>2 fold) under ABA, MV and heat treatments but downregulated under NaCl stress, indicating universal stress-responsiveness. Further, Musa-miR397 overexpression in banana significantly increased plant growth by 2-3 fold compared with wild-type but did not compromise tolerance towards Cu deficiency and NaCl stress. RNA-seq of transgenic and wild type plants revealed modulation in expression of 71 genes related to diverse aspects of growth and development, collectively promoting enhanced biomass. Summing up, our results not only portray Musa-miR397 as a candidate for enhancing plant biomass but also highlight it at the crossroads of growth-defense trade-offs.
国家哲学社会科学文献中心版权所有