首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI-MS/MS
  • 本地全文:下载
  • 作者:Sun Young Lee ; Sung Bum Park ; Young Eun Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-019-53196-0
  • 出版社:Springer Nature
  • 摘要:The demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.
国家哲学社会科学文献中心版权所有