首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Functional importance of NUDT9H domain and N-terminal ADPR-binding pocket in two species variants of vertebrate TRPM2 channels
  • 本地全文:下载
  • 作者:Frank J. P. Kühn ; Wiebke Ehrlich ; Daniel Barth
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-019-55232-5
  • 出版社:Springer Nature
  • 摘要:There are at least two different principles of how ADP-ribose (ADPR) induces activation of TRPM2 channels. In human TRPM2, gating requires the C-terminal NUDT9H domain as ADPR-binding module, whereas in sea anemone, NUDT9H is dispensable and binding of ADPR occurs N-terminally. Zebrafish TRPM2 needs both, the N-terminal ADPR-binding pocket and NUDT9H. Our aim was to pinpoint the relative functional contributions of NUDT9H and the N-terminal ADPR-binding pocket in zebrafish TRPM2, to identify fundamental mechanisms of ADPR-directed gating. We show that the NUDT9H domains of human and zebrafish TRPM2 are interchangeable since chimeras generate ADPR-sensitive channels. A point mutation at a highly conserved position within NUDT9H induces loss-of-function in both vertebrate channels. The substrate specificity of zebrafish TRPM2 corresponds to that of sea anemone TRPM2, indicating gating by the proposed N-terminal ADPR-binding pocket. However, a point mutation in this region abolishes ADPR activation also in human TRPM2. These findings provide functional evidence for an uniform N-terminal ADPR-binding pocket in TRPM2 of zebrafish and sea anemone with modified function in human TRPM2. The structural importance of NUDT9H in vertebrate TRPM2 can be associated with a single amino acid residue which is not directly involved in the binding of ADPR.
国家哲学社会科学文献中心版权所有