摘要:The rumen microbiome is critical to nutrient utilization and feed efficiency in cattle. Consequently, the objective of this study was to identify microbial and biochemical factors in Angus steers affecting divergences in feed efficiency using 16S amplicon sequencing and untargeted metabolomics. Based on calculated average residual feed intake (RFI), steers were divided into high- and low-RFI groups. Features were ranked in relation to RFI through supervised machine learning on microbial and metabolite compositions. Residual feed intake was associated with several features of the bacterial community in the rumen. Decreased bacterial α- (P = 0.03) and β- diversity (P < 0.001) was associated with Low-RFI steers. RFI was associated with several serum metabolites. Low-RFI steers had greater abundances of pantothenate (P = 0.02) based on fold change (high/low RFI). Machine learning on RFI was predictive of both rumen bacterial composition and serum metabolomic signature (AUC ≥ 0.7). Log-ratio proportions of the bacterial classes Flavobacteriia over Fusobacteriia were enriched in low-RFI steers (F = 6.8, P = 0.01). Reductions in Fusobacteriia and/or greater proportions of pantothenate-producing bacteria, such as Flavobacteriia, may result in improved nutrient utilization in low-RFI steers. Flavobacteriia and Pantothenate may potentially serve as novel biomarkers to predict or evaluate feed efficiency in Angus steers.