首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Data-driven acceleration of photonic simulations
  • 本地全文:下载
  • 作者:Rahul Trivedi ; Logan Su ; Jesse Lu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-019-56212-5
  • 出版社:Springer Nature
  • 摘要:Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell's equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell's equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell's equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10-50) in the number of GMRES iterations required for solving frequency-domain Maxwell's equations.
国家哲学社会科学文献中心版权所有