摘要:The question whether novel rehabilitation interventions can exploit restorative rather than compensatory mechanisms has gained momentum in recent years. Assessments measuring selective voluntary motor control could answer this question. However, while current clinical assessments are ordinal-scaled, which could affect their sensitivity, lab-based assessments are costly and time-consuming. We propose a novel, interval-scaled, computer-based assessment game using low-cost accelerometers to evaluate selective voluntary motor control. Participants steer an avatar owl on a star-studded path by moving the targeted joint of the upper or lower extremities. We calculate a target joint accuracy metric, and an outcome score for the frequency and amplitude of involuntary movements of adjacent and contralateral joints as well as the trunk. We detail the methods and, as a first proof of concept, relate the results of select children with upper motor neuron lesions (n = 48) to reference groups of neurologically intact children (n = 62) and adults (n = 64). Linear mixed models indicated that the cumulative therapist score, rating the degree of selectivity, was a good predictor of the involuntary movements outcome score. This highlights the validity of this assessgame approach to quantify selective voluntary motor control and warrants a more thorough exploration to quantify changes induced by restorative interventions.