首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Global existence and blow-up analysis for parabolic equations with nonlocal source and nonlinear boundary conditions
  • 本地全文:下载
  • 作者:Wei Kou ; Juntang Ding
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-21
  • DOI:10.1186/s13661-020-01340-5
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We investigate the following nonlinear parabolic equations with nonlocal source and nonlinear boundary conditions: $$ \textstyle\begin{cases} (g(u) )_{t} =\sum_{i,j=1}^{N} (a^{ij}(x)u_{x_{i}} ) _{x_{j}}+\gamma _{1}u^{m} (\int _{D} u^{l}{\,\mathrm{d}}x ) ^{p}-\gamma _{2}u^{r}& \mbox{in } D\times (0,t^{*}), \\ \sum_{i,j=1}^{N}a^{ij}(x)u_{x_{i}}\nu _{j}=h(u) & \mbox{on } \partial D\times (0,t^{*}), \\ u(x,0)=u_{0}(x)\geq 0 &\mbox{in } \overline{D}, \end{cases} $$ where p and $\gamma _{1}$ are some nonnegative constants, m, l, $\gamma _{2}$, and r are some positive constants, $D\subset \mathbb{R}^{N}$ ($N\geq 2$) is a bounded convex region with smooth boundary ∂D. By making use of differential inequality technique and the embedding theorems in Sobolev spaces and constructing some auxiliary functions, we obtain a criterion to guarantee the global existence of the solution and a criterion to ensure that the solution blows up in finite time. Furthermore, an upper bound and a lower bound for the blow-up time are obtained. Finally, some examples are given to illustrate the results in this paper..
  • 关键词:Nonlinear parabolic equations ; Blow-up ; Nonlocal source ; Lower bound ;
国家哲学社会科学文献中心版权所有