首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Higher-rank zeta functions for elliptic curves
  • 本地全文:下载
  • 作者:Lin Weng ; Don Zagier
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:9
  • 页码:4546-4558
  • DOI:10.1073/pnas.1912023117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In earlier work by L.W., a nonabelian zeta function was defined for any smooth curve X over a finite field F q and any integer n ≥ 1 by where the sum is over isomorphism classes of F q -rational semistable vector bundles V of rank n on X with degree divisible by n. This function, which agrees with the usual Artin zeta function of X / F q if n = 1 , is a rational function of q − s with denominator ( 1 − q − n s ) ( 1 − q n − n s ) and conjecturally satisfies the Riemann hypothesis. In this paper we study the case of genus 1 curves in detail. We show that in that case the Dirichlet series where the sum is now over isomorphism classes of F q -rational semistable vector bundles V of degree 0 on X, is equal to ∏ k = 1 ∞ ζ X / F q ( s + k ) , and use this fact to prove the Riemann hypothesis for ζ X , n ( s ) for all n.
  • 关键词:elliptic curves over finite fields ; semistable bundles ; higher-rank zeta functions ; Riemann hypothesis
国家哲学社会科学文献中心版权所有