期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:12
页码:6424-6429
DOI:10.1073/pnas.1909172117
出版社:The National Academy of Sciences of the United States of America
摘要:Electronic nematicity, a correlated state that spontaneously breaks rotational symmetry, is observed in several layered quantum materials. In contrast to their liquid-crystal counterparts, the nematic director cannot usually point in an arbitrary direction (XY nematics), but is locked by the crystal to discrete directions (Ising nematics), resulting in strongly anisotropic fluctuations above the transition. Here, we report on the observation of nearly isotropic XY-nematic fluctuations, via elastoresistance measurements, in hole-doped Ba1− x Rb x Fe2 As2 iron-based superconductors. While for x = 0 , the nematic director points along the in-plane diagonals of the tetragonal lattice, for x = 1 , it points along the horizontal and vertical axes. Remarkably, for intermediate doping, the susceptibilities of these two symmetry-irreducible nematic channels display comparable Curie–Weiss behavior, thus revealing a nearly XY-nematic state. This opens a route to assess this elusive electronic quantum liquid-crystalline state.