期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:12
页码:6777-6783
DOI:10.1073/pnas.1919267117
出版社:The National Academy of Sciences of the United States of America
摘要:Tol-Pal is a multiprotein system present in the envelope of Gram-negative bacteria. Inactivation of this widely conserved machinery compromises the outer membrane (OM) layer of these organisms, resulting in hypersensitivity to many antibiotics. Mutants in the tol-pal locus fail to complete division and form cell chains. This phenotype along with the localization of Tol-Pal components to the cytokinetic ring in Escherichia coli has led to the proposal that the primary function of the system is to promote OM constriction during division. Accordingly, a poorly constricted OM is believed to link the cell chains formed upon Tol-Pal inactivation. However, we show here that cell chains of E. coli tol-pal mutants are connected by an incompletely processed peptidoglycan (PG) layer. Genetic suppressors of this defect were isolated and found to overproduce OM lipoproteins capable of cleaving the glycan strands of PG. Among the factors promoting cell separation in mutant cells was a protein of previously unknown function (YddW), which we have identified as a divisome-localized glycosyl hydrolase that cleaves peptide-free PG glycans. Overall, our results indicate that the cell chaining defect of Tol-Pal mutants cannot simply be interpreted as a defect in OM constriction. Rather, the complex also appears to be required for the activity of several OM-localized enzymes with cell wall remodeling activity. Thus, the Tol-Pal system may play a more general role in coordinating OM invagination with PG remodeling at the division site than previously appreciated.