首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Molecular mechanisms of Evening Complex activity in Arabidopsis
  • 本地全文:下载
  • 作者:Catarina S. Silva ; Aditya Nayak ; Xuelei Lai
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:12
  • 页码:6901-6909
  • DOI:10.1073/pnas.1920972117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX–ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity..
  • 关键词:circadian clock ; gene regulation ; Evening Complex ; protein–DNA complex
国家哲学社会科学文献中心版权所有