期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:11
页码:5706-5713
DOI:10.1073/pnas.1911620117
出版社:The National Academy of Sciences of the United States of America
摘要:The state of a quantum system, adiabatically driven in a cycle, may acquire a measurable phase depending only on the closed trajectory in parameter space. Such geometric phases are ubiquitous and also underline the physics of robust topological phenomena such as the quantum Hall effect. Equivalently, a geometric phase may be induced through a cyclic sequence of quantum measurements. We show that the application of a sequence of weak measurements renders the closed trajectories, hence the geometric phase, stochastic. We study the concomitant probability distribution and show that, when varying the measurement strength, the mapping between the measurement sequence and the geometric phase undergoes a topological transition. Our finding may impact measurement-induced control and manipulation of quantum states—a promising approach to quantum information processing. It also has repercussions on understanding the foundations of quantum measurement.