首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:On Forecasting the Intraday Bitcoin Price using Ensemble of Variational Mode Decomposition and Generalized Additive Model.
  • 本地全文:下载
  • 作者:Samuel Asante Gyamerah
  • 期刊名称:Journal of King Saud University @?C Computer and Information Sciences
  • 印刷版ISSN:1319-1578
  • 出版年度:2020
  • 页码:1-7
  • DOI:10.1016/j.jksuci.2020.01.006
  • 出版社:Elsevier
  • 摘要:High frequency Bitcoin price series are often non-linear and non-stationary and hence forecasting the price of Bitcoin directly or by transformation using statistical models is subject to large errors. This paper presents an ensemble model using variational mode decomposition (VMD) and Generalized additive model (GAM) to forecast intraday Bitcoin price. To evaluate the performance of the constructed model, it is compared with an ensemble of empirical mode decomposition (EMD) and GAM. The results showed that VMD-GAM model performed better than the EMD-GAM ensemble model in terms of three evaluation metrics (root mean square error, mean absolute percentage error, and bias) used.
  • 关键词:Bitcoin price forecasting ; Empirical mode decomposition ; Variational mode decomposition ; Generalized additive model ; Ensemble forecast
国家哲学社会科学文献中心版权所有