期刊名称:Journal of King Saud University @?C Computer and Information Sciences
印刷版ISSN:1319-1578
出版年度:2019
页码:1-13
DOI:10.1016/j.jksuci.2019.01.010
出版社:Elsevier
摘要:Recently, most companies market their products on the web to recognize their customers’ requirements and to improve their services’ quality according to the customers’ feedback and opinions. A huge amount of reviews and opinions are posted daily on products. Obtaining and quickly analyzing these opinions become a difficult task. These opinions might lead to a tendency or disinclination to a specific point of view. To represent the products’ opinions from customers’ perspectives, opinion retrieval becomes a demanding and essential task for automatically extracting, analyzing, and summarizing customers’ reviews. Usually, online products are offered by several suppliers in e-commerce. Therefore, to keep up the competitiveness among suppliers, the need for innovative requirements is required. This paper proposed an enhanced opinion retrieval approach depending on the explicit feature based opinion mining. The proposed approach expands the initial products’ requirements using extended heuristics and linguistic patterns of the Arabic opinions. Besides the relevant score, several factors, like features’ weight, the opinion importance, and the sentiment polarity are used to rank the retrieved results. The experimental results show the capability of the proposed approach to automatically extract more innovative features compared to the conditional random field (CRF) results.
关键词:Product features extraction ; Opinion retrieval ; Opinion relevance model ; Opinion mining