首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Anomaly detection using control flow pattern and fuzzy regression in port container handling
  • 本地全文:下载
  • 作者:Dewi Rahmawati ; Riyanarto Sarno
  • 期刊名称:Journal of King Saud University @?C Computer and Information Sciences
  • 印刷版ISSN:1319-1578
  • 出版年度:2019
  • 页码:1-10
  • DOI:10.1016/j.jksuci.2018.12.004
  • 出版社:Elsevier
  • 摘要:Deviations in port container handling can be detected by many factors. One of them is anomalies in the process model. Several studies have proposed anomaly detection methods. However, these methods do not accommodate verbal judgments of experts. These methods treat instances with low deviation as containing anomalies while in reality not all instances with low deviation contain anomalies. Considering this, a method was developed for detecting anomalies in port container handling using fuzzy regression in order to accommodate verbal expert judgments on the rate of anomaly (ROA). First, a control flow pattern is built to form an anomaly pattern that will be used for detecting wrong patterns. Then, five anomaly attributes were declared, i.e. skip sequence, wrong throughput time (max), wrong throughput time (min), wrong patterns and wrong decisions. In the experiment, the rate of anomaly was found using three methods, namely fuzzy regression (FR), support vector regression (SVR) with radial basis function (RBF) kernel, and multiple linear regression (MLR). The results showed that fuzzy regression was better at detecting anomalies than multiple linear regression and support vector regression. The experimental validation showed that fuzzy regression combined with control flow pattern was able to reduce false positives and false negatives. The sensitivity, specificity and accuracy of the proposed method were 96%, 97% and 99%, respectively.
  • 关键词:Anomaly ; Control flow patterns ; Fuzzy regression ; Multiple linear regression
国家哲学社会科学文献中心版权所有