摘要:Based on fuzzy adaptive and dynamic surface (FADS), an integrated guidance and control (IGC) approach was proposed for large caliber naval gun guided projectile, which was robust to target maneuver, canard dynamic characteristics, and multiple constraints, such as impact angle, limited measurement of line of sight (LOS) angle rate and nonlinear saturation of canard deflection. Initially, a strict feedback cascade model of IGC in longitudinal plane was established, and extended state observer (ESO) was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system, including aerodynamic parameters perturbation, target maneuver and model errors. Secondly, aiming at zeroing LOS angle tracking error and LOS angle rate in finite time, a nonsingular terminal sliding mode (NTSM) was designed with adaptive exponential reaching law. Furthermore, combining with dynamic surface, which prevented the complex differential of virtual control laws, the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law. Finally, the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection. The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded, rigorously proven by Lyapunov stability theory. Hardware-in-the-loop simulation (HILS) and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
关键词:Integrated guidance and control ; Multiple constraints ; Fuzzy adaptive ; Dynamic surface ; Nonsingular terminal sliding mode ; Extended state observer