首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Globally optimal robust DSM fusion
  • 本地全文:下载
  • 作者:Roland Perko ; Christopher Zach
  • 期刊名称:European Journal of Remote Sensing
  • 电子版ISSN:2279-7254
  • 出版年度:2016
  • 卷号:49
  • 期号:1
  • 页码:489-511
  • DOI:10.5721/EuJRS20164926
  • 摘要:This work presents the mathematical formulation of a novel globally optimal robust digital surface model (DSM) fusion method, that can be used to combine several 2.5D DSMs extracted from airborne or spaceborne stereo images. The main novelty is the definition of a convex energy functional with a β-Lipschitz continuous gradient that allows a trivial solution of the posed minimization problem, where the robustness is achieved by incorporating the Huber norm into the energy functional. All according mathematical proofs are derived within this work. The experiments are based on two different minimization schemes and are applied on airborne optical, on spaceborne optical and on spaceborne synthetic aperture radar (SAR) images. The resulting fused 2.5D DSMs are rich in detail and are of higher quality than results of other local fusion methods.
  • 关键词:DSM fusion ; robust fusion ; multiple view geometry ; energy functional ; global minimization ; gradient descent
国家哲学社会科学文献中心版权所有