首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Using land-based stations for air–sea interaction studies
  • 本地全文:下载
  • 作者:Anna Rutgersson ; Heidi Pettersson ; Erik Nilsson
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2020
  • 卷号:72
  • 期号:1
  • 页码:1-24
  • DOI:10.1080/16000870.2019.1697601
  • 摘要:In situ measurements representing the marine atmosphere and air–sea interaction are taken at ships, buoys, stationary moorings and land-based towers, where each observation platform has structural restrictions. Air–sea fluxes are often small, and due to the limitations of the sensors, several corrections are applied. Land-based towers are convenient for long-term observations, but one critical aspect is the representativeness of marine conditions. Hence, a careful analysis of the sites and the data is necessary. Based on the concept of flux footprint, we suggest defining flux data from land-based marine micrometeorological sites in categories depending on the type of land influence: 1. CAT1: Marine data representing open sea, 2. CAT2: Disturbed wave field resulting in physical properties different from open sea conditions and heterogeneity of water properties in the footprint region, and 3. CAT3: Mixed land–sea footprint, very heterogeneous conditions and possible active carbon production/consumption. Characterization of data would be beneficial for combined analyses using several sites in coastal and marginal seas and evaluation/comparison of properties and dynamics. Aerosol fluxes are a useful contribution to characterizing a marine micrometeorological field station; for most conditions, they change sign between land and sea sectors. Measured fluxes from the land-based marine station Ostergarnsholm are € used as an example of a land-based marine site to evaluate the categories and to present an example of differences between open sea and coastal conditions. At the Ostergarnsholm site the surface drag is larger for € CAT2 and CAT3 than for CAT1 when wind speed is below 10 m/s. The heat and humidity fluxes show a distinctive distinguished seasonal cycle; latent heat flux is larger for CAT2 and CAT3 compared to CAT1. The flux of carbon dioxide is large from the coastal and land–sea sectors, showing a large seasonal cycle and significant variability (compared to the open sea sector). Aerosol fluxes are partly dominated by sea spray emissions comparable to those observed at other open sea conditions.
  • 关键词:air–sea interaction ; coastal zone ; carbon dioxide ; micrometeorological measurements ; sea spray
国家哲学社会科学文献中心版权所有