首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Exponential inequalities for nonstationary Markov chains
  • 本地全文:下载
  • 作者:Pierre Alquier ; Paul Doukhan ; Xiequan Fan
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2019
  • 卷号:7
  • 期号:1
  • 页码:150-168
  • DOI:10.1515/demo-2019-0007
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Exponential inequalities are main tools in machine learning theory. To prove exponential inequalities for non i.i.d random variables allows to extend many learning techniques to these variables. Indeed, much work has been done both on inequalities and learning theory for time series, in the past 15 years. However, for the non independent case, almost all the results concern stationary time series. This excludes many important applications: for example any series with a periodic behaviour is nonstationary. In this paper, we extend the basic tools of [19] to nonstationary Markov chains. As an application, we provide a Bernsteintype inequality, and we deduce risk bounds for the prediction of periodic autoregressive processes with an unknown period..
  • 关键词:Nonstationary Markov chains ; Martingales ; Exponential inequalities ; Time series forecasting ; Statistical learning theory ; Oracle inequalities ; Model selection ; 60J05 ; 60E15 ; 62M20 ; 62M05 ; 62M10 ; 68Q32
国家哲学社会科学文献中心版权所有