首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Optimal bandwidth selection for recursive Gumbel kernel density estimators
  • 本地全文:下载
  • 作者:Yousri Slaoui
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2019
  • 卷号:7
  • 期号:1
  • 页码:375-393
  • DOI:10.1515/demo-2019-0020
  • 出版社:Walter de Gruyter GmbH
  • 摘要:In this paper, we propose a data driven bandwidth selection of the recursive Gumbel kernel estimators of a probability density function based on a stochastic approximation algorithm. The choice of the bandwidth selection approaches is investigated by a second generation plug-in method. Convergence properties of the proposed recursive Gumbel kernel estimators are established. The uniform strong consistency of the proposed recursive Gumbel kernel estimators is derived. The new recursive Gumbel kernel estimators are compared to the non-recursive Gumbel kernel estimator and the performance of the two estimators are illustrated via simulations as well as a real application..
  • 关键词:Density estimation ; Stochastic approximation algorithm ; Gumbel kernel ; smoothing ; curve fitting ; Primary 62G07; 62L20; 65D10
国家哲学社会科学文献中心版权所有