首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics
  • 本地全文:下载
  • 作者:J. Nathan Kutz ; Steven L. Brunton
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2015
  • 卷号:-1
  • 期号:open-issue
  • 页码:459-471
  • DOI:10.1515/nanoph-2015-0024
  • 出版社:Walter de Gruyter GmbH
  • 摘要:We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.
  • 关键词:mode-locked lasers ; frequency combs ; machine learning ; extremum-seeking control
国家哲学社会科学文献中心版权所有