首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A New Hybrid Genetic and Information Gain Algorithm for Imputing Missing Values in Cancer Genes Datasets
  • 本地全文:下载
  • 作者:O. M. Elzeki ; M. F. Alrahmawy ; Samir Elmougy
  • 期刊名称:International Journal of Intelligent Systems and Applications
  • 印刷版ISSN:2074-904X
  • 电子版ISSN:2074-9058
  • 出版年度:2019
  • 卷号:11
  • 期号:12
  • 页码:20-33
  • DOI:10.5815/ijisa.2019.12.03
  • 出版社:MECS Publisher
  • 摘要:A DNA microarray can represent thousands of genes for studying tumor and genetic diseases in humans. Datasets of DNA microarray normally have missing values, which requires an undeniably crucial process for handling missing values. This paper presents a new algorithm, named EMII, for imputing missing values in medical datasets. EMII algorithm evolutionarily combines Information Gain (IG) and Genetic Algorithm (GA) to mutually generate imputable values. EMII algorithm is column-oriented not instance oriented than other implementation of GA which increases column correlation to the class in the same dataset. EMII algorithm is evaluated for imputing the generated missing values in four cancer gene expression standard medical datasets (Colon, Leukemia, Lung cancer-Michigan, and Prostate) via comparing the truth original complete datasets against the imputed datasets. The analysis of the experimental results reveals that the imputed values generated by EMII were almost the same as the original values besides having the same impact on the applied classifiers due to accuracy as similar as the original complete datasets. EMII has a running time of θ(n2), where n is the total number of columns..
  • 关键词:Data Mining;Genetic Algorithm;Information Gain;Missing Values Imputation;DNA Microarray;Classification
国家哲学社会科学文献中心版权所有