期刊名称:International Journal of Information Technology and Computer Science
印刷版ISSN:2074-9007
电子版ISSN:2074-9015
出版年度:2019
卷号:11
期号:12
页码:19-29
DOI:10.5815/ijitcs.2019.12.02
出版社:MECS Publisher
摘要:With the advent of online social media, such as articles, websites, blogs, messages, posts, news channels, and by and large web content has drastically changed the way individuals take a glimpse at different things around them. Today, it's an everyday practice for some individuals to read the news on the web. Sentiment analysis (also called opinion mining) alludes to the utilization of natural language processing, content investigation, and computational linguistics to distinguish and separate subjective data in source materials. Sentiment analysis is broadly applied to online reviews, news feeds and social networking for a wide variety of applications, ranging from marketing to client services. Sentiment analysis emphasizes on the classification of textual data into positive, negative and neutral categories. This research is an endeavor to the case study that calculates news polarity or emotions on different sports feeds which may influence changes in sports news development patterns. The interest of this approach is to generate various text analytics that computes feelings from all pertinent ongoing sports news accessible out in the public domain. The significance and application value of sentiment analysis of RSS feeds in this study is to distinguish between positive feeds and negative feeds on sports that could affect readers or users minds in order to improve RSS feeds messaging broadcast among folks. The methodology utilizes the sentiment analysis techniques using two different online open-source sentiment analysis tools in Rich Site Summary (RSS) news feeds that have an influence on sports-related broadcast esteems..
关键词:Sentiment Analysis;RSS feeds;Sports News;Polarity;Social Media