期刊名称:International Journal of Information Technology and Computer Science
印刷版ISSN:2074-9007
电子版ISSN:2074-9015
出版年度:2019
卷号:11
期号:12
页码:50-56
DOI:10.5815/ijitcs.2019.12.05
出版社:MECS Publisher
摘要:This paper focuses on an empirical hand gesture recognition system in the domain of image processing and machine learning. The hand gesture is probably the most intuitive and frequently used mode of nonverbal communication in human society. The paper analyzes the efficiency of the Histogram of Oriented Gradients (HOG) as the feature descriptor and Support Vector Machine (SVM) as the classification model in case of gesture recognition. There are three stages of the recognition procedure namely image binarization, feature extraction, and classification. The findings of the paper show that the model classifies hand gestures for the given dataset with satisfactory efficiency. The outcome of this work can be further utilized in practical fields of real-world applications dealing with non-verbal communication..
关键词:Hand Gesture Recognition;Support Vector Machine;Histogram of Oriented Gradients;Human;Computer Interaction