首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:Maximum water level calculation based on 2-dimensional DELFT-3D model, the case study of the Oka river
  • 本地全文:下载
  • 作者:Pavel Terskii ; Elizaveta Rakcheeva ; Maksim Kharlamov
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:163
  • 页码:1-6
  • DOI:10.1051/e3sconf/202016301012
  • 出版社:EDP Sciences
  • 摘要:This research represents methodical approach and main results of water level hydrodynamic modeling for real summer low-water season and extreme spring flood of 1% probability. The object of modeling is 105 km length section of the Oka River in Moscow region between Kashira and Kolomna urban districts. Modeling object includes also the Moscow River section downstream the Severka River mouth. Two-dimensional hydrodynamic model constructed using DELFT-3D. To build the model we used the detailed elevation model and hydrological conditions based on in-situ measurements in 2019, special estimated discharge and water level time-series of 1% exceedance probability based on reference year observations and distributed Chezy coefficient calibration. The model implementation resulted in the actual detailed distribution of the water discharge, velocity and level along the Oka River section (including the downstream Moscow River) for low-water and extremely high water periods. These results are used for the flood zone delineation in the Kashira and Kolomna urban districts.
  • 其他摘要:This research represents methodical approach and main results of water level hydrodynamic modeling for real summer low-water season and extreme spring flood of 1% probability. The object of modeling is 105 km length section of the Oka River in Moscow region between Kashira and Kolomna urban districts. Modeling object includes also the Moscow River section downstream the Severka River mouth. Two-dimensional hydrodynamic model constructed using DELFT-3D. To build the model we used the detailed elevation model and hydrological conditions based on in-situ measurements in 2019, special estimated discharge and water level time-series of 1% exceedance probability based on reference year observations and distributed Chezy coefficient calibration. The model implementation resulted in the actual detailed distribution of the water discharge, velocity and level along the Oka River section (including the downstream Moscow River) for low-water and extremely high water periods. These results are used for the flood zone delineation in the Kashira and Kolomna urban districts.
国家哲学社会科学文献中心版权所有