首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Thermal Method for Non-Destructive Control of Actual Coolant Mass Flow through a Heating Device
  • 本地全文:下载
  • 作者:Denis Karpov ; Anton Sinitsyn
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:161
  • 页码:1-3
  • DOI:10.1051/e3sconf/202016101041
  • 出版社:EDP Sciences
  • 摘要:The studies show that expenses for heating buildings and structures account for more than 60% of total utility costs in the Russian Federation. Therefore, the issues on energy and resource conservation and improving the energy efficiency of construction projects for various purposes are relevant and priority. Infrared thermography is actively used during examination of thermomechanical equipment, building structures, external and internal engineering systems and their elements. Heat monitoring makes it possible to avoid significant costs for dismantling of controlled objects and to localize the thermal defects found during the inspection stage, thereby reducing costs of repair works. The article considers and analyzes the existing options for the quantitative analysis of thermograms. The authors propose a new method for quantitative processing of thermograms, aimed at assessing the operation of heating devices in heating systems of buildings and structures. The essence of thermal non-destructive testing technique is to determine the actual mass flow rate of coolant through the heating device.
  • 其他摘要:The studies show that expenses for heating buildings and structures account for more than 60% of total utility costs in the Russian Federation. Therefore, the issues on energy and resource conservation and improving the energy efficiency of construction projects for various purposes are relevant and priority. Infrared thermography is actively used during examination of thermomechanical equipment, building structures, external and internal engineering systems and their elements. Heat monitoring makes it possible to avoid significant costs for dismantling of controlled objects and to localize the thermal defects found during the inspection stage, thereby reducing costs of repair works. The article considers and analyzes the existing options for the quantitative analysis of thermograms. The authors propose a new method for quantitative processing of thermograms, aimed at assessing the operation of heating devices in heating systems of buildings and structures. The essence of thermal non-destructive testing technique is to determine the actual mass flow rate of coolant through the heating device.
国家哲学社会科学文献中心版权所有