摘要:In this paper, flow-induced vibrations of bluff bodies with four different cross-sectional geometries (circle, square, triangle and semi-circle) arranged both in single and tandem (gap ratio equals to 3 and 5) configurations are investigated in a wind tunnel. It is found that triangular and square cylinders have the higher amplitude than that of the semi-circular and the circular cylinders in the single configuration. When two cylinders are arranged in tandem, the circular cylinders have the highest amplitude among all tested cylinders. Furthermore, the semi-circular cylinder shows that its vibrating amplitude increases with the reduced velocity in the tandem system due to the galloping effect.
其他摘要:In this paper, flow-induced vibrations of bluff bodies with four different cross-sectional geometries (circle, square, triangle and semi-circle) arranged both in single and tandem (gap ratio equals to 3 and 5) configurations are investigated in a wind tunnel. It is found that triangular and square cylinders have the higher amplitude than that of the semi-circular and the circular cylinders in the single configuration. When two cylinders are arranged in tandem, the circular cylinders have the highest amplitude among all tested cylinders. Furthermore, the semi-circular cylinder shows that its vibrating amplitude increases with the reduced velocity in the tandem system due to the galloping effect.