首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Detection of waterborne bacteria using Adaptive Neuro-Fuzzy Inference System
  • 本地全文:下载
  • 作者:Farhan Mohammad Khan ; Smriti Sridhar ; Rajiv Gupta
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:158
  • 页码:1-7
  • DOI:10.1051/e3sconf/202015805002
  • 出版社:EDP Sciences
  • 摘要:The detection of waterborne bacteria is crucial to prevent health risks. Current research uses soft computing techniques based on Artificial Neural Networks (ANN) for the detection of bacterial pollution in water. The limitation of only relying on sensor-based water quality analysis for detection can be prone to human errors. Hence, there is a need to automate the process of real-time bacterial monitoring for minimizing the error, as mentioned above. To address this issue, we implement an automated process of water-borne bacterial detection using a hybrid technique called Adaptive Neuro-fuzzy Inference System (ANFIS), that integrates the advantage of learning in an ANN and a set of fuzzy if-then rules with appropriate membership functions. The experimental data as the input to the ANFIS model is obtained from the open-sourced dataset of government of India data platform, having 1992 experimental laboratory results from the years 2003-2014. We have included the following water quality parameters: Temperature, Dissolved Oxygen (DO), pH, Electrical conductivity, Biochemical oxygen demand (BOD) as the significant factors in the detection and existence of bacteria. The membership function changes automatically with every iteration during training of the system. The goal of the study is to compare the results obtained from the three membership functions of ANFIS- Triangle, Trapezoidal, and Bell-shaped with 35 = 243 fuzzy set rules. The results show that ANFIS with generalized bell-shaped membership function is best with its average error 0.00619 at epoch 100.
  • 其他摘要:The detection of waterborne bacteria is crucial to prevent health risks. Current research uses soft computing techniques based on Artificial Neural Networks (ANN) for the detection of bacterial pollution in water. The limitation of only relying on sensor-based water quality analysis for detection can be prone to human errors. Hence, there is a need to automate the process of real-time bacterial monitoring for minimizing the error, as mentioned above. To address this issue, we implement an automated process of water-borne bacterial detection using a hybrid technique called Adaptive Neuro-fuzzy Inference System (ANFIS), that integrates the advantage of learning in an ANN and a set of fuzzy if-then rules with appropriate membership functions. The experimental data as the input to the ANFIS model is obtained from the open-sourced dataset of government of India data platform, having 1992 experimental laboratory results from the years 2003-2014. We have included the following water quality parameters: Temperature, Dissolved Oxygen (DO), pH, Electrical conductivity, Biochemical oxygen demand (BOD) as the significant factors in the detection and existence of bacteria. The membership function changes automatically with every iteration during training of the system. The goal of the study is to compare the results obtained from the three membership functions of ANFIS- Triangle, Trapezoidal, and Bell-shaped with 35 = 243 fuzzy set rules. The results show that ANFIS with generalized bell-shaped membership function is best with its average error 0.00619 at epoch 100.
国家哲学社会科学文献中心版权所有