首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Finite element simulation of a motorway bridge collapse using the concrete damage plasticity model
  • 本地全文:下载
  • 作者:Andrey Benin ; Matija Guzijan-Dilber ; Leonid Diachenko
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:157
  • 页码:1-10
  • DOI:10.1051/e3sconf/202015706018
  • 出版社:EDP Sciences
  • 摘要:The aim of this work is to show how the concrete damage plasticity model developed by Lubliner et al. can be applied for calculation of a motorway bridge collapse occurred in the Amur region, Russia. The concrete structural behaviour is highly complex. Being a quasi-brittle material, concrete demonstrates softening behaviour that is numerically complex due to the loss of positive definiteness of the tangent rigidity matrix of the material, and hence the loss of the ellipticity of the equilibrium rate equation. This eventually leads to the loss of well-posedness of the rate boundary value problem. Besides that, concrete behaviour in compression differs from that in tension. There are a few different failure modes of concrete material: tension cracking, compression crushing, spalling of concrete, etc.
  • 其他摘要:The aim of this work is to show how the concrete damage plasticity model developed by Lubliner et al. can be applied for calculation of a motorway bridge collapse occurred in the Amur region, Russia. The concrete structural behaviour is highly complex. Being a quasi-brittle material, concrete demonstrates softening behaviour that is numerically complex due to the loss of positive definiteness of the tangent rigidity matrix of the material, and hence the loss of the ellipticity of the equilibrium rate equation. This eventually leads to the loss of well-posedness of the rate boundary value problem. Besides that, concrete behaviour in compression differs from that in tension. There are a few different failure modes of concrete material: tension cracking, compression crushing, spalling of concrete, etc.
国家哲学社会科学文献中心版权所有