摘要:Indonesia has followed development of new seismic design criteria in the new seismic building codes, from hazard-based in the former SNI-03-1726-2002 to the current risk-based SNI-1726-2012. The major changes in SNI-1726-2012 are using Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration maps. Five years later (2017), the seismic hazard maps have been updated adopting the most recent data and current state of knowledge in probabilistic and deterministic seismic hazard assessment methodologies. To establish the New 2019 Risk Targeted Ground Motion (RTGM) of spectral acceleration (Ss and S1), and risk coefficients (CRS and CR1), for both short (T=0.2s) and 1-second (T=1s) periods, respectively have been developed based on the 2017 Indonesian hazard maps. The RTGM was calculated as the spectral value resulting in 1% probability of building collapse in 50 years through numerical integration of hazard curves and structural capacity. The log-normal standard deviation (?) of the structural capacity envelope has been revised from 0.70 to 0.65. This paper presents the new resulted RTGM maps. Furthermore, the paper also presents revision of seismic amplification factors for 0, 0.2, and 1 second periods (FPGA, Fa, and, Fv) to generate ground surface maximum and design spectra associated with the siteclassifications.
其他摘要:Indonesia has followed development of new seismic design criteria in the new seismic building codes, from hazard-based in the former SNI-03-1726-2002 to the current risk-based SNI-1726-2012. The major changes in SNI-1726-2012 are using Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration maps. Five years later (2017), the seismic hazard maps have been updated adopting the most recent data and current state of knowledge in probabilistic and deterministic seismic hazard assessment methodologies. To establish the New 2019 Risk Targeted Ground Motion (RTGM) of spectral acceleration (Ss and S1), and risk coefficients (CRS and CR1), for both short (T=0.2s) and 1-second (T=1s) periods, respectively have been developed based on the 2017 Indonesian hazard maps. The RTGM was calculated as the spectral value resulting in 1% probability of building collapse in 50 years through numerical integration of hazard curves and structural capacity. The log-normal standard deviation (?) of the structural capacity envelope has been revised from 0.70 to 0.65. This paper presents the new resulted RTGM maps. Furthermore, the paper also presents revision of seismic amplification factors for 0, 0.2, and 1 second periods (FPGA, Fa, and, Fv) to generate ground surface maximum and design spectra associated with the siteclassifications.