首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Approach to Ranking and Selection for a Binary Measurement System
  • 本地全文:下载
  • 作者:Mark Eschmann ; James D. Stamey ; Phil D. Young
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2019
  • 卷号:9
  • 期号:4
  • 页码:436-444
  • DOI:10.4236/ojs.2019.94029
  • 出版社:Scientific Research Publishing
  • 摘要:Binary measurement systems that classify parts as either pass or fail are widely used. Inspectors or inspection systems are often subject to error. The error rates are unlikely to be identical across inspectors. We propose a random effects Bayesian approach to model the error probabilities and overall conforming rate. We also introduce a feature-subset selection procedure to determine the best inspector in terms of overall classification accuracy. We provide simulation studies that demonstrate the viability of our proposed estimation ranking and subset-selection methods and apply the methods to a real data set..
  • 关键词:Bayesian Statistics;Quality Control;Binary Measurement Systems;Misclassification
国家哲学社会科学文献中心版权所有