期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2020
卷号:17
期号:2
页码:1-13
DOI:10.1177/1729881420921630
出版社:SAGE Publications
摘要:This article presents a lane-level localization system adaptive to different driving conditions, such as occlusions, complicated road structures, and lane-changing maneuvers. The system uses surround-view cameras, other low-cost sensors, and a lane-level road map which suits for mass deployment. A map-matching localizer is proposed to estimate the probabilistic lateral position. It consists of a sub-map extraction module, a perceptual model, and a matching model. A probabilistic lateral road feature is devised as a sub-map without limitations of road structures. The perceptual model is a deep learning network that processes raw images from surround-view cameras to extract a local probabilistic lateral road feature. Unlike conventional deep-learning-based methods, the perceptual model is trained by auto-generated labels from the lane-level map to reduce manual effort. The matching model computes the correlation between the sub-map and the local probabilistic lateral road feature to output the probabilistic lateral estimation. A particle-filter-based framework is developed to fuse the output of map-matching localizer with the measurements from wheel speed sensors and an inertial measurement unit. Experimental results demonstrate that the proposed system provides the localization results with submeter accuracy in different driving conditions..