首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Continuous reinforcement learning to adapt multi-objective optimization online for robot motion
  • 本地全文:下载
  • 作者:Kai Zhang ; Sterling McLeod ; Minwoo Lee
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2020
  • 卷号:17
  • 期号:2
  • 页码:1-14
  • DOI:10.1177/1729881420911491
  • 出版社:SAGE Publications
  • 摘要:This article introduces a continuous reinforcement learning framework to enable online adaptation of multi-objective optimization functions for guiding a mobile robot to move in changing dynamic environments. The robot with this framework can continuously learn from multiple or changing environments where it encounters different numbers of obstacles moving in unknown ways at different times. Using both planned trajectories from a real-time motion planner and already executed trajectories as feedback observations, our reinforcement learning agent enables the robot to adapt motion behaviors to environmental changes. The agent contains a Q network connected to a long short-term memory network. The proposed framework is tested in both simulations and real robot experiments over various, dynamically varied task environments. The results show the efficacy of online continuous reinforcement learning for quick adaption to different, unknown, and dynamic environments..
  • 关键词:Mobile robots ; motion planning ; reinforcement learning
国家哲学社会科学文献中心版权所有