首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)
  • 本地全文:下载
  • 作者:Ramona Serrano-Bautista ; Leovardo Mata-Mata
  • 期刊名称:Ensayos Revista de Economía
  • 印刷版ISSN:1870-221X
  • 电子版ISSN:2448-8402
  • 出版年度:2018
  • 卷号:37
  • 期号:1
  • 页码:43-76
  • DOI:10.29105/ensayos37.1-2
  • 摘要:Abstract The purpose of this investigation is to propose a multivariate volatility model that takes into consideration time varying volatility and the property of the α-stable sub-Gaussian distribution to model heavy tails. The principal assumption is that returns follow a sub-Gaussian distribution, which is a particular multivariate stable distribution. The proposed GARCH model is applied to a Value at Risk (VAR) estimation of a portfolio composed by 5 companies listed in the Mexican Stock Exchange Index (IPC) and compared with the one obtained using the normal multivariate distribution, t-Student and Cauchy. In particular, we examine performances during the financial crisis of 2008. Resumen El objetivo de esta investigación es proponer un modelo de volatilidad multivariable, el cual combina la propiedad de la distribución α-estable para ajustar colas pesadas con el modelo GARCH para capturar clúster de volatilidad. El supuesto inicial es que los rendimientos siguen una distribución sub-Gaussiana, la cual es un caso particular de las distribuciones estables multivariadas. El modelo GARCH propuesto se aplica en la estimación del VaR a un portafolio compuesto por cinco activos que cotizan en la Bolsa Mexicana de Valores (BMV). En particular, se compara el desempeño del modelo propuesto con la estimación del VaR obtenida bajo la hipótesis multivariada Gaussiana, t-Student y Cauchy durante el período de la crisis financiera de 2008.
  • 其他摘要:Abstract The purpose of this investigation is to propose a multivariate volatility model that takes into consideration time varying volatility and the property of the α-stable sub-Gaussian distribution to model heavy tails. The principal assumption is that returns follow a sub-Gaussian distribution, which is a particular multivariate stable distribution. The proposed GARCH model is applied to a Value at Risk (VAR) estimation of a portfolio composed by 5 companies listed in the Mexican Stock Exchange Index (IPC) and compared with the one obtained using the normal multivariate distribution, t-Student and Cauchy. In particular, we examine performances during the financial crisis of 2008. Resumen El objetivo de esta investigación es proponer un modelo de volatilidad multivariable, el cual combina la propiedad de la distribución α-estable para ajustar colas pesadas con el modelo GARCH para capturar clúster de volatilidad. El supuesto inicial es que los rendimientos siguen una distribución sub-Gaussiana, la cual es un caso particular de las distribuciones estables multivariadas. El modelo GARCH propuesto se aplica en la estimación del VaR a un portafolio compuesto por cinco activos que cotizan en la Bolsa Mexicana de Valores (BMV). En particular, se compara el desempeño del modelo propuesto con la estimación del VaR obtenida bajo la hipótesis multivariada Gaussiana, t-Student y Cauchy durante el período de la crisis financiera de 2008.
  • 关键词:Distribución α-estable Sub-Gaussiana;GARCH multivariado estable Sub-Gaussiano;Valor en Riesgo
  • 其他关键词:α-stable Sub-Gaussian distribution;multivariate stable Sub-Gaussian GARCH model;Value at Risk
国家哲学社会科学文献中心版权所有