首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Soil Oxygen Limits Microbial Phosphorus Utilization in Humid Tropical Forest Soils
  • 本地全文:下载
  • 作者:Avner Gross ; Jennifer Pett-Ridge ; Whendee L. Silver
  • 期刊名称:Soil Systems
  • 电子版ISSN:2571-8789
  • 出版年度:2018
  • 卷号:2
  • 期号:4
  • 页码:65-75
  • DOI:10.3390/soilsystems2040065
  • 出版社:MDPI AG
  • 摘要:Soil phosphorus (P) availability is of special interest in many humid tropical forests, especially those on highly weathered, iron (Fe)- and aluminum (Al)-rich soils where P often limits net primary productivity. Phosphorus cycling is partly dependent on the ability of microbes to compete for P with Fe and Al minerals, which strongly bind P. Soil P availability is also indirectly affected by soil redox conditions due to its effects on microbial activity and reductive dissolution of Fe oxides that may weaken Fe-O-P sorption strength. Here, we explored P sorption, soil Fe (II) concentrations, soil CO2 production, organic and inorganic P pools, and microbial biomass P in tropical soils that typically experience frequent low redox (valley soils), or fluctuating redox conditions (slope soils). Soils from both topographic positions were pre-incubated under oxic or anoxic headspaces and then amended with a mixture of P (as orthophosphate) and carbon (C, as acetate, to maintain microbial activity) and incubated in the dark for 24 h. Phosphorus sorption to the mineral phase occurred on a time scale of seconds to minutes in valley and slope soils, reflecting strong abiotic P sorption capacity. Valley soils were characterized by inherently higher Fe(II) concentrations and lower respiration rates. Under anoxic headspaces, Fe(II) concentrations increased 3-to 5-fold in the both soils. Soil respiration and microbial P utilization declined significantly in both soils under anoxic conditions, regardless of Fe(II) concentrations. Microbial P concentrations were highest when slope soils were incubated under an oxic headspace, despite the high P sorption under these conditions. Our results suggest that microbial P utilization is indirectly limited by low O2 availability and that microbes are able to effectively compete with minerals for P under Fe-oxidizing conditions. These results emphasize the central role of soil microorganisms in regulating P availability, even in the presence of strong abiotic sorption capacity.
  • 关键词:phosphorus availability; microbial biomass; tropical soils; iron reduction; anoxic conditions phosphorus availability ; microbial biomass ; tropical soils ; iron reduction ; anoxic conditions
国家哲学社会科学文献中心版权所有