首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A Trillion Coral Reef Colors: Deeply Annotated Underwater Hyperspectral Images for Automated Classification and Habitat Mapping
  • 本地全文:下载
  • 作者:Ahmad Rafiuddin Rashid ; Arjun Chennu
  • 期刊名称:Data
  • 印刷版ISSN:2306-5729
  • 出版年度:2020
  • 卷号:5
  • 期号:1
  • 页码:19-32
  • DOI:10.3390/data5010019
  • 出版社:MDPI Publishing
  • 摘要:This paper describes a large dataset of underwater hyperspectral imagery that can be used by researchers in the domains of computer vision, machine learning, remote sensing, and coral reef ecology. We present the details of underwater data acquisition, processing and curation to create this large dataset of coral reef imagery annotated for habitat mapping. A diver-operated hyperspectral imaging system (HyperDiver) was used to survey 147 transects at 8 coral reef sites around the Caribbean island of Curaçao. The underwater proximal sensing approach produced fine-scale images of the seafloor, with more than 2.2 billion points of detailed optical spectra. Of these, more than 10 million data points have been annotated for habitat descriptors or taxonomic identity with a total of 47 class labels up to genus- and species-levels. In addition to HyperDiver survey data, we also include images and annotations from traditional (color photo) quadrat surveys conducted along 23 of the 147 transects, which enables comparative reef description between two types of reef survey methods. This dataset promises benefits for efforts in classification algorithms, hyperspectral image segmentation and automated habitat mapping.
  • 关键词:hyperspectral imaging; proximal sensing; machine learning; hierarchical learning; coral reef; biodiversity; classification; habitat mapping; image segmentation hyperspectral imaging ; proximal sensing ; machine learning ; hierarchical learning ; coral reef ; biodiversity ; classification ; habitat mapping ; image segmentation
国家哲学社会科学文献中心版权所有