首页    期刊浏览 2024年07月24日 星期三
登录注册

文章基本信息

  • 标题:Statistically Steady State Large‐Eddy Simulations Forced by an Idealized GCM: 1. Forcing Framework and Simulation Characteristics
  • 本地全文:下载
  • 作者:Zhaoyi Shen ; Kyle G. Pressel ; Zhihong Tan
  • 期刊名称:Journal of Advances in Modeling Earth Systems
  • 电子版ISSN:1942-2466
  • 出版年度:2020
  • 卷号:12
  • 期号:2
  • 页码:1-16
  • DOI:10.1029/2019MS001814
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Using large‐eddy simulations (LES) systematically has the potential to inform parameterizations of subgrid‐scale processes in general circulation models (GCMs), such as turbulence, convection, and clouds. Here we show how LES can be run to simulate grid columns of GCMs to generate LES across a cross section of dynamical regimes. The LES setup approximately replicates the thermodynamic and water budgets in GCM grid columns. Resolved horizontal and vertical transports of heat and water and large‐scale pressure gradients from the GCM are prescribed as forcing in the LES. The LES are forced with prescribed surface temperatures, but atmospheric temperature and moisture are free to adjust, reducing the imprinting of GCM fields on the LES. In both the GCM and LES, radiative transfer is treated in a unified but idealized manner (semigray atmosphere without water vapor feedback or cloud radiative effects). We show that the LES in this setup reaches statistically steady states without nudging to thermodynamic GCM profiles. The steady states provide training data for developing GCM parameterizations. The same LES setup also provides a good basis for studying the cloud response to global warming.
国家哲学社会科学文献中心版权所有