首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Efficient sampling for ecosystem service supply assessment at a landscape scale
  • 本地全文:下载
  • 作者:Francisco Javier Ancin-Murguzur ; Lorena Munoz ; Christopher Monz
  • 期刊名称:Ecosystems and People
  • 印刷版ISSN:2639-5908
  • 电子版ISSN:2639-5916
  • 出版年度:2019
  • 卷号:15
  • 期号:1
  • 页码:33-41
  • DOI:10.1080/26395908.2018.1541329
  • 出版社:Taylor & Francis Group
  • 摘要:Decision makers and stakeholders need high-quality data to manage ecosystem services (ES) efficiently. Landscape-level data on ES that are of sufficient quality to identify spatial tradeoffs, co-occurrence and hotspots of ES are costly to collect, and it is therefore important to increase the efficiency of sampling of primary data. We demonstrate how ES could be assessed more efficiently through image-based point intercept method and determine the tradeoff between the number of sample points (pins) used per image and the robustness of the measurements. We performed a permutation study to assess the reliability implications of reducing the number of pins per image. We present a flexible approach to optimize landscape-level assessments of ES that maximizes the information obtained from 1 m 2 digital images. Our results show that 30 pins are sufficient to measure ecosystem service indicators with a crown cover higher than 5% for landscape scale assessments. Reducing the number of pins from 100 to 30 reduces the processing time up to a 50% allowing to increase the number of sampled plots, resulting in more management-relevant ecosystem service maps. The three criteria presented here provide a flexible approach for optimal design of landscape-level assessments of ES.
国家哲学社会科学文献中心版权所有