首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Prediction of bruise volume propagation of pear during the storage using soft computing methods
  • 本地全文:下载
  • 作者:Mahsa Sadat Razavi ; Abdollah Golmohammadi ; Reza Sedghi
  • 期刊名称:Food Science & Nutrition
  • 电子版ISSN:2048-7177
  • 出版年度:2020
  • 卷号:8
  • 期号:2
  • 页码:884-893
  • DOI:10.1002/fsn3.1365
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Bruises occur under both static and dynamic loadings when the imposed stress on fruit goes over the failure stress of the fruit tissue. Bruise damage is the main reason for fruit quality loss. In this study, the potential of artificial neural network (ANN), adaptive neuro‐fuzzy inference system (ANFIS), and multiple regression (MR) techniques to predict bruise volume propagation of pears during the storage time was evaluated. For this purpose, at first, the radius of curvature at loading region was obtained. Samples were divided into five groups and subjected to five force levels. Then, they were kept under storage conditions and at 7‐time intervals after loading tests, bruise volume was calculated using magnetic resonance imaging (MRI) and image processing techniques. Force, storage time, and radius of curvature at loading region were employed as input variables, and bruise volume (BV) was considered as output in the developed models. Multilayer perceptron (MLP) artificial neural network with three layers that includes an input layer (three neurons), two hidden layers (two and nine neurons), and one output layer was used. For the evaluation of models, three criteria (RMSE, VAF, and R 2) were calculated. ANN and MR gave the highest and lowest correlation between predicted and actual values, respectively. These results indicate that the ANN techniques can be used to predict pear bruising propagation in storage time.
  • 关键词:adaptive neuro‐fuzzy inference system;artificial neural network;bruise;image processing;magnetic resonance imaging;multiple regression;storage
国家哲学社会科学文献中心版权所有