首页    期刊浏览 2024年07月23日 星期二
登录注册

文章基本信息

  • 标题:Design and testing of highly transparent concentrator photovoltaic modules for efficient dual‐land‐use applications
  • 本地全文:下载
  • 作者:Daisuke Sato ; Noboru Yamada
  • 期刊名称:Energy Science & Engineering
  • 电子版ISSN:2050-0505
  • 出版年度:2020
  • 卷号:8
  • 期号:3
  • 页码:779-788
  • DOI:10.1002/ese3.550
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Two types of highly transparent concentrator photovoltaic (CPV) modules that separately utilize direct sunlight and diffuse sunlight for efficient dual‐land‐use applications were designed and tested. The type A module, comprising a typical‐scale CPV lens and solar cells, has a completely direct‐diffuse‐separated design for power generation and other solar applications. On the other hand, the type B module, consisting of a microscale CPV lens and solar cells, was designed to increase the amount of direct sunlight transmitted based on an intentional reduction in the ratio of the lens aperture area to the module aperture area. In experiments, both modules exhibit higher electricity yields and module‐transmitted irradiances (MTIs) than those of a conventional partially transparent flat photovoltaic module with 17% efficiency Si solar cells. Furthermore, the modules show direct normal irradiance‐based efficiencies of 26.7% (type A) and 18.5% (type B) while simultaneously showing MTI‐to‐global normal irradiance ratios of 15.3%‐63.7% (type A) and 38.0%‐63.8% (type B) under various irradiance conditions. Thus, an irradiance of at least 160 W/m 2 under the modules can be achieved even when they are arrayed without gaps (at a ground coverage ratio = 1).
  • 关键词:concentrator photovoltaics;diffuse solar irradiation;direct solar irradiation;dual land use;multijunction solar cells;transparent photovoltaic module
国家哲学社会科学文献中心版权所有