首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Glucose Homeostasis following Diesel Exhaust Particulate Matter Exposure in a Lung Epithelial Cell-Specific IKK2-Deficient Mouse Model
  • 本地全文:下载
  • 作者:Sufang Chen ; Minjie Chen ; Wei Wei
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2019
  • 卷号:127
  • 期号:5
  • 页码:1-11
  • DOI:10.1289/EHP4591
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background: Pulmonary inflammation is believed to be central to the pathogenesis due to exposure to fine particulate matter with aerodynamic diameter ≤ 2.5 μ m ( PM 2.5 ). This central role, however, has not yet been systemically examined. Objective: In the present study, we exploited a lung epithelial cell-specific inhibitor κ B kinase 2 (IKK2) knockout mouse model to determine the role of pulmonary inflammation in the pathophysiology due to exposure to diesel exhaust particulate matter (DEP). Methods: SFTPC -rtTA + / − tetO -cre + / − IKK 2 flox / flox (lung epithelial cell-specific IKK2 knockout, KO) and SFTPC -rtTA + / − tetO -cre + / − IKK 2 flox / flox (wild-type, tgWT) mice were intratracheally instilled with either vehicle or DEP for 4 months, and their inflammatory response and glucose homeostasis were then assessed. Results: In comparison with tgWT mice, lung epithelial cell-specific IKK2 - deficient mice had fewer DEP exposure-induced bronchoalveolar lavage fluid immune cells and proinflammatory cytokines as well as fewer DEP exposure-induced circulating proinflammatory cytokines. Glucose and insulin tolerance tests revealed that lung epithelial cell-specific IKK2 deficiency resulted in markedly less DEP exposure–induced insulin resistance and greater glucose tolerance. Akt phosphorylation analyses of insulin-responsive tissues showed that DEP exposure primarily targeted hepatic insulin sensitivity. Lung epithelial cell–specific IKK2-deficient mice had significantly lower hepatic insulin resistance than tgWT mice had. Furthermore, this difference in insulin resistance was accompanied by consistent differences in hepatic insulin receptor substrate 1 serine phosphorylation and inflammatory marker expression. Discussion: Our findings suggest that in a tissue-specific knockout mouse model, an IKK2-dependent pulmonary inflammatory response was essential for the development of abnormal glucose homeostasis due to exposure to DEP.
国家哲学社会科学文献中心版权所有